What is the Integral of #tan (pi/4)y dy#?

2 Answers
Oct 21, 2016

Assuming no errors in the question:

#I=inttan(pi/4)ydy#

Since #tan(pi/4)=1#, the integral simplifies to:

#I=intydy#

#I=inty^1dy#

Which can be integrated using the rule: #inty^ndy=y^(n+1)/(n+1)+C#

#I=y^(1+1)/(1+1)+C#

#I=y^2/2+C#

Oct 21, 2016

Assuming this specific error in the question:

#I=inttan(pi/4y)dy#

We will use substitution. First let #s=pi/4y#. Differentiating both sides yields #ds=pi/4dy#. Thus, #dy=4/pids#.

#I=inttan(s)(4/pids)#

#I=4/piinttan(s)ds#

You may already know how to integrate tangent, but this is a reminder. Rewrite tangent using sine and cosine:

#I=4/piintsin(s)/cos(s)ds#

Now, let #t=cos(s)#, implying that #dt=-sin(s)ds#. In this case, we see that #sin(s)ds=-dt#.

#I=4/piint(-dt)/t#

#I=-4/piintdt/t#

This is an important integral: #intdt/t=lnabst+C#. Thus

#I=-4/pilnabst+C#

Since #t=cos(s)#:

#I=-4/pilnabscos(s)+C#

Since #s=pi/4y#:

#I=-4/pilnabscos(pi/4y)+C#