What is the limit of this ? #lim_(x->0) (e^x - e^-x -2x)/(x-sinx)#
2 Answers
Explanation:
La regla de L'Hospital:
Usando la regla:
Otra vez:
Otra vez:
The limit equals
Explanation:
We immediately see that if we try and evaluate, we get
#L = lim_(x-> 0) (e^x + e^-x - 2)/(1 - cosx)#
Once again trying to evaluate, we get
#L = lim_(x-> 0) (e^x -e^(-x))/(sinx)#
Once again
#L =lim_(x-> 0) (e^x + e^(-x))/cosx#
Finally something we can evaluate through substitution!
#L = (e^0 + e^0)/cos(0) = 2/1 = 2#
Hopefully this helps!