What is the period of the trigonometric function given by #f(x)=2sin(5x)#?

1 Answer
Feb 16, 2015

The period is: #T=2/5pi#.

The period of a periodic function is given by the period of the function divided the number the multiplies the #x# variable.

#y=f(kx)rArrT_(fun)=T_(f)/k#

So, for example:

#y=sin3xrArrT_(fun)=T_(sin)/3=(2pi)/3#

#y=cos(x/4)rArrT_(fun)=T_(cos)/(1/4)=(2pi)/(1/4)=8pi#

#y=tan5xrArrT_(fun)=T_(tan)/5=pi/5#.

In our case:

#T_(fun)=T_(sin)/5=(2pi)/5#.

The #2# changes only the amplitude, that, from #[-1,1]#, becomes #[-5,5]#.