What is the slope-intercept form of the line passing through # (-6, 8)# and #(-1, 7) #?

1 Answer

Answer:

Slope-intercept form #y=mx+b# is
#y=-x/5+34/5#

Explanation:

Start from the given. Let #P_2(-6, 8)# and #P_1(-1, 7)#

from the given , use the two-point form first
#y-y_1=((y_2-y_1)/(x_2-x_1))*(x-x_1)#

after which , transform the equation to #y=mx+b# slope-intercept form

#y-7=((8-7)/(-6--1))*(x--1)#

#y-7=(1)/(-5)*(x+1)#

#-5(y-7)=-5(1/-5)*(x+1)#

#-5(y-7)=cancel(-5)(1/cancel(-5))*(x+1)#

#-5(y-7)=1*(x+1)#

#-5y+35=x+1#

#-5y=x+1-35#

#-5y=x-34#

#(-5y)/-5=(x-34)/-5#

#(cancel(-5)y)/cancel(-5)=(x-34)/-5#

#y=-x/5+34/5#

have a nice day from the Philippines.