What is the slope of the polar curve #f(theta) = sectheta - csctheta # at #theta = (5pi)/4#?

2 Answers

See the answer below:
enter image source here

Sep 4, 2017

#1#

Explanation:

#r=f(theta)=sectheta-csctheta#

We want #dy/dx# of this curve at #theta=(5pi)/4#.

To find the slope in terms of #x# and #y#, we have to use the identities #{(x=rcostheta),(y=rsintheta):}#

So here,

#{(x=(sectheta-csctheta)costheta=1-cottheta),(y=(sectheta-csctheta)sintheta=tantheta-1):}#

Note that #dy/dx=(dy/(d theta))/(dx/(d theta))#.

#{(dx/(d theta)=d/(d theta)(1-cottheta)=csc^2theta),(dy/(d theta)=d/(d theta)(tantheta-1)=sec^2theta):}#

So:

#dy/dx=(dy/(d theta))/(dx/(d theta))=sec^2theta/csc^2theta=tan^2theta#

So the slope at #theta=(5pi)/4# is:

#m=tan^2((5pi)/4)=(-1)^2=1#