What is the slope of the polar curve #f(theta) = sectheta - csctheta # at #theta = (5pi)/4#?
2 Answers
Sep 3, 2017
See the answer below:
Sep 4, 2017
Explanation:
#r=f(theta)=sectheta-csctheta#
We want
To find the slope in terms of
So here,
#{(x=(sectheta-csctheta)costheta=1-cottheta),(y=(sectheta-csctheta)sintheta=tantheta-1):}#
Note that
#{(dx/(d theta)=d/(d theta)(1-cottheta)=csc^2theta),(dy/(d theta)=d/(d theta)(tantheta-1)=sec^2theta):}#
So:
#dy/dx=(dy/(d theta))/(dx/(d theta))=sec^2theta/csc^2theta=tan^2theta#
So the slope at
#m=tan^2((5pi)/4)=(-1)^2=1#