What is the slope of the polar curve #f(theta) = theta^2-theta - cos^3theta + tan^2theta# at #theta = pi/4#?
1 Answer
The slope is:
Explanation:
The slope will be given by
To get the equation in terms of
So here, where
#x=costheta(theta^2-theta-cos^3theta+tan^2theta)#
#color(white)x=theta^2costheta-thetacostheta-cos^4theta+tanthetasintheta#
#y=sintheta(theta^2-theta-cos^3theta+tan^2theta)#
#color(white)y=theta^2sintheta-thetasintheta-cos^3thetasintheta+sinthetatan^2theta#
To find
#dx/(d theta)=2thetacostheta-theta^2sintheta-costheta+thetasintheta+4cos^3thetasintheta+sec^2thetasintheta+tanthetacostheta#
#color(white)(dx/(d theta))=2thetacostheta-theta^2sintheta-costheta+thetasintheta+4cos^3thetasintheta+tanthetasectheta+sintheta#
#dy/(d theta)=2thetasintheta+theta^2costheta-sintheta-thetacostheta+3cos^2thetasin^2theta-cos^4theta+costhetatan^2theta+2sinthetatanthetasec^2theta#
#color(white)(dy/(d theta))=2thetasintheta+theta^2costheta-sintheta-thetacostheta+3cos^2thetasin^2theta-cos^4theta+sinthetatantheta+2tan^2thetasectheta#
Now we can find
Just so we don't have to write out a giant fraction, let's evaluate
#dx/(d theta)=2 pi/4 1/sqrt2+pi^2/16 1/sqrt2-1/sqrt2+pi/4 1/sqrt2+4 1/(2sqrt2)1/sqrt2+2 1/sqrt2+1 1/sqrt2#
#color(white)(dx/(d theta))=pi/(2sqrt2)+pi^2/(16sqrt2)+pi/(4sqrt2)+1+sqrt2#
#color(white)(dx/(d theta))=1/(16sqrt2)(pi^2+12pi+16sqrt2+32)#
#dy/(d theta)=2 pi/4 1/sqrt2+pi^2/16 1/sqrt2-1/sqrt2-pi/4 1/sqrt2+3 1/2 1/2-1/4+1/sqrt2 1+2*1sqrt2#
#color(white)(dy/(d theta))=pi/(2sqrt2)+pi^2/(16sqrt2)-pi/(4sqrt2)+1/2+2sqrt2#
#color(white)(dy/(d theta))=1/(16sqrt2)(pi^2+4pi+8sqrt2+64)#
Thus, at
#dy/dx=(dy//d theta)/(dx//d theta)=(pi^2+4pi+8sqrt2+64)/(pi^2+12pi+16sqrt2+32)approx0.9564910#