What is the slope of the tangent line of #r=theta-sin((theta)/6+(2pi)/3)# at #theta=(pi)/4#?

1 Answer
Jan 13, 2017

The slope is the equation:

#dy/dx =(r'(theta)sin(theta) + r(theta)cos(theta))/(r'(theta)cos(theta)-r(theta)sin(theta))#

evaluated at #theta = pi/4#

Explanation:

From the reference Tangents with polar coordinates , we obtain the equation [1].

#dy/dx =(r'(theta)sin(theta) + r(theta)cos(theta))/(r'(theta)cos(theta)-r(theta)sin(theta))" [1]"#

#r(theta) = theta - sin(theta/6 + (2pi)/3)#

#r'(theta) = 1 - 1/6cos(theta/6 + (2pi)/3)#

#dy/dx =((1 - 1/6cos(theta/6 + (2pi)/3))sin(theta) + (theta - sin(theta/6 + (2pi)/3))cos(theta))/((1 - 1/6cos(theta/6 + (2pi)/3))cos(theta)-(theta - sin(theta/6 + (2pi)/3))sin(theta))#

The slope, #m = dy/dx|_(pi/4)#

#m = 0.776632#