What is the sum of a 7–term geometric series if the first term is –11, the last term is –171,875, and the common ratio is –5?
1 Answer
Jan 31, 2016
Explanation:
The general term of a geometric series can be described by the formula:
#a_n = ar^(n-1)#
where the initial term is
Then we find:
#(1-r) sum_(n=1)^N a_n#
#= sum_(n=1)^N a r^(n-1) - r sum_(n=1)^N a r^(n-1)#
#= a + color(red)(cancel(color(black)(sum_(n=2)^N a r^(n-1)))) - color(red)(cancel(color(black)(sum_(n=2)^N a r^(n-1)))) - ar^N#
#= a(1-r^N)#
So dividing both ends by
#sum_(n=1)^N a_n = (a(1-r^N))/(1-r)#
In our example,
So:
#sum_(n=1)^7 (-11)(-5)^(n-1)#
#=((-11)(1-(-5)^7))/(1-(-5))#
#=((-11)(1-(-78125)))/6#
#=((-11)(78126))/6#
#=-11*13021#
#=-143231#