# What is the surface area of the solid created by revolving #f(x)=e^(x^2+x-1)/(x+1)# over #x in [0,1]# around the x-axis?

##### 1 Answer

Jan 16, 2017

#### Explanation:

The Volume of Revolution about

# V= int_(x=a)^(x=b) \ pi y^2 \ dx #

So for for this problem:

# V= int_0^1 \ pi (e^(x^2+x-1)/(x+1))^2 \ dx #

There is no elementary anti-derivative. The solution can be found numerically as