What is the the vertex of #y = x^2-6x+6#?

1 Answer
Jun 11, 2016

vertex: #(3,-3)#

Explanation:

The general vertex form is
#color(white)("XXX")y=color(green)(m)(x-color(red)(a))^2+color(blue)(b)#
for a parabola with vertex at #(color(red)(a),color(blue)(b))#

Given
#color(white)("XXX")y=x^2-6x+6#
#rArr#
#color(white)("XXX")y=x^2-color(cyan)(6)xcolor(orange)(+)(color(cyan)(6)/2)^2+6color(orange)(-)(color(cyan)(6)/2)^2#

#color(white)("XXX")y=(x-color(red)(3))^2+color(blue)(""(-3))#

which is the vertex form with vertex at #(color(red)(3),color(blue)(-3))#

For verification purposes, here is a graph of the original equation:
graph{x^2-6x+6 [-3.506, 7.595, -3.773, 1.774]}