# What is the value of 8 4/15+11 3/10?

Jan 7, 2017

$\frac{587}{30}$

or

$19 \frac{17}{30}$

#### Explanation:

The first step for solving this problem is to convert the mixed fractions to improper fractions by multiplying the integer portion of the mixed fraction by the correct form of $1$ and then adding this to the fraction portion of the mixed fraction:

$\left(\left(8 \times \frac{15}{15}\right) + \frac{4}{15}\right) + \left(\left(11 \times \frac{10}{10}\right) + \frac{3}{10}\right) \to$

$\left(\frac{120}{15} + \frac{4}{15}\right) + \left(\frac{110}{10} + \frac{3}{10}\right) \to$

$\frac{124}{15} + \frac{113}{10}$

Now, we need to put each of these fractions over a common denominator (for this problem $30$) in order to be able to add the fractions:

$\left(\frac{2}{2} \times \frac{124}{15}\right) + \left(\frac{3}{3} \times \frac{113}{10}\right) \to$

$\frac{248}{15} + \frac{339}{30}$

We can now add the fractions:

$\frac{248 + 339}{30} \to$

$\frac{587}{30}$

or

#(570 + 17)/30 ->

$\frac{570}{30} + \frac{17}{30} \to$

$19 + \frac{17}{30}$

$19 \frac{17}{30}$