What is the vertex of # y= -(2x-1)^2+x^2-x+3#?

1 Answer
Apr 13, 2016

#"vertex "->(x,y)->(1/2,11/4)#

Explanation:

Multiply out the brackets giving:

#y=-(4x^2-4x+1)+x^2-x+3#

Multiply everything inside the bracket by #(-1)# giving

#y=-4x^2+4x-1+x^2-x+3#

#y=-3x^2+3x+2#

Write as: #y=-3(x^2+3/(-3)x)+2#

#=>y=-3(x^2-x)+2#

Consider the coefficient #-1# from #-x# inside the brackets

#color(blue)(x_("vertex")=(-1/2)xx(-1)=+1/2)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Substitute for #x_("vertex") in the equation

#color(brown)(y=-3x^2+3x+2" "->" " y=-3(color(blue)(1/2))^2+3(color(blue)(1/2) )+2#

#color(blue)(y_("vertex")= 2 3/4 = 11/4)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#color(blue)("vertex "->(x,y)->(1/2,11/4)#

Tony B