What is the vertex of # y= 4(x+2)^2-x^2-5x+3#?

1 Answer
Nov 9, 2016

The coordinate of the vertex is #(-11/6,107/12)#.

Explanation:

For the parabola given by the standard-form equation #y=ax^2+bx+c#, the #x#-coordinate of the parabola's vertex is at #x=-b/(2a)#.

So, to find the vertex's #x#-coordinate, we should first write the equation of this parabola in standard form. To do so, we have to expand #(x+2)^2#. Recall that #(x+2)^2=(x+2)(x+2)#, which can then be FOILed:

#y=4(x^2+2x+2x+4)-x^2-5x+3#

#color(white)y=4(x^2+4x+4)-x^2-5x+3#

Distribute the #4#:

#color(white)y=4x^2+16x+16-x^2-5x+3#

Group like terms:

#color(white)y=(4x^2-x^2)+(16x-5x)+(16+3)#

#color(white)y=3x^2+11x+19#

This is now in standard form, #y=ax^2+bx+c#. We see that #a=3,b=11#, and #c=19#.

So, the #x#-coordinate of the vertex is #x=-b/(2a)=-11/(2(3))=-11/6#.

To find the #y#-coordinate, plug #x=-11/6# into the parabola's equation.

#y=3(-11/6)^2+11(-11/6)+19#

#color(white)y=3(121/36)-121/6+19#

#color(white)y=121/12-121/6+19#

#color(white)y=121/12-242/12+228/12#

#color(white)y=107/12#

So, the coordinate of the vertex is #(-11/6,107/12)#.

graph{4(x+2)^2-x^2-5x+3 [-33.27, 31.68, -5.92, 26.56]}

Note that #(-11/6,107/12)approx(-1.83,8.92)#.