What is the vertex of #y=4x^2+3x+18#?

1 Answer
Apr 14, 2016

#color(green)("Vertex"->(x,y)->(-3/8,279/16)#

Notice the way I stick with fractions. Much more pricise than decimals.

Explanation:

There are various ways of doing this. I am going to show you one of them.

Write the equation as:

#y=4(x^2+3/4x)+18#

#color(blue)("Determine "x_("vertex"))#
Multiply the #3/4# by #(-1/2)#

#color(blue)(x_("vertex")=(-1/2)xx3/4= -3/8)#

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Not that #-3/8 =0.375#
My graphing package has not rounded this properly to 2 decimal places
'|~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
enter image source here

#color(blue)("Determine "y_("vertex"))#

Substitute of #x#

#y_("vertex")=4(-3/8)^2+3(-3/8)+18#

#y_("vertex")=4(+9/64)-9/8+18#

#color(blue)(y_("vertex")=9/16-9/8+18 = 279/16)#

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(green)("Vertex"->(x,y)->(-3/8,279/16)#