What is the vertex of # y= (x-3)^2-2x-4#?

1 Answer
Dec 22, 2015

The vertex is at:#(4, -11)#

Explanation:

#y=(x−3)^2−2x−4# => expand to simplify:
#y=x^2-6x+9-2x-4# => simplify add/subtract like terms:
#y=x^2-8x+5# => quadratic function in standard/general form of :
#f(x)=y=ax^2+bx+c#=>where the x and y coordinates of the vertex are:
#(x, y)=[-b/(2a) , f(-b/(2a))]#
so in this case:
#f(x)=y=x^2-8x+5#=> where:#a=1, b=-8, c=5#, then:
#x=-(-8/(2))=4#, and:
#f(4)=4^2-8*4+5=-11#
hence the vertex is at:
#(4, -11)#