Y=logx? Give it's derivation.

2 Answers
Mar 13, 2018

#d/dx[lnx]=1/x#

Explanation:

Let #y=e^x#, then lny=#x#, by definition.

Let #y=lnx#.............#[1]#, therefore #x=e^y#...........#[2]#

Differentiate............#[2]# with respect to #y#, #dx/dy=e^y#,

inverting both sides, #dy/dx=1/e^y=1/x# [Since #x=e^y# from #......[2]]#

Therefore#d/dx[lnx]=1/x#, and so #int1/xdx=lnx+#constant.

Mar 13, 2018

Another derivation of #d/dxlogx#

Explanation:

Firstly, let #log-=ln#

So #y=lnx#.

But, by definition, #lnx=int_0^x1/tdt#.

Hence, by the first Fundamental Theorem of Calculus, it follows that #d/dxlnx=1/t=1/x=dy/dx#