How do you solve a triangle if you are given a = 11, b = 14, c = 20?

2 Answers
Jun 5, 2015

Have a look (and check my math):
enter image source here
So:
#h=7.41=14sin(alpha)# then #alpha=31.95°#
#h=7.41=11sin(beta)# then #beta=42.35°#
#gamma=180-31.95-42.35=105.70°#

Jun 8, 2015

Use the trig identity: c^2 = a^2 + b^2 - 2ab.cosC

400 = 121 + 196 - 308.cos A

#cos A = -83/308 = - 0.27 -> A = 105.66#

Next, find cos B.

196 = 400 + 121 - 440.cos B

#cos B = 325/440 = 0.74 --> B = 42.38# deg

C = 180 - A - B = 180 - 105.66 - 42.38 = 31.96