How do you simplify #(5y+3)(5y-3)(25y^2+9)#? Algebra Polynomials and Factoring Multiplication of Polynomials by Binomials 1 Answer George C. Jun 22, 2015 #(5y+3)(5y-3)(25y^2+9) = (25y^2-9)(25y^2+9) = 625y^4-81# Explanation: This uses the difference of squares identity twice: #a^2-b^2 = (a-b)(a+b)# #(5y+3)(5y-3)(25y^2+9)# #= ((5y)^2-3^2)(25y^2+9)# #= (25y^2-9)(25y^2+9)# #= ((25y^2)^2-9^2)# #= 625y^4-81# Answer link Related questions What is FOIL? How do you use the distributive property when you multiply polynomials? How do you multiply #(x-2)(x+3)#? How do you simplify #(-4xy)(2x^4 yz^3 -y^4 z^9)#? How do you multiply #(3m+1)(m-4)(m+5)#? How do you find the volume of a prism if the width is x, height is #2x-1# and the length if #3x+4#? How do you multiply #(a^2+2)(3a^2-4)#? How do you simplify #(x – 8)(x + 5)#? How do you simplify #(p-1)^2#? How do you simplify #(3x+2y)^2#? See all questions in Multiplication of Polynomials by Binomials Impact of this question 1765 views around the world You can reuse this answer Creative Commons License