When #a, b >= 0# we have #sqrt(ab) = sqrt(a)sqrt(b)#
#sqrt(3x^2-12x+12)#
#=sqrt(3*(x^2-4x+4))#
#=sqrt(3*(x-2)^2)#
Now #3 >= 0# and #(x-2)^2 >= 0# for all #x in RR#
So:
#sqrt(3*(x-2)^2)#
#= sqrt(3)*sqrt((x-2)^2)#
#= sqrt(3)*abs(x-2)#
Note that #(x-2)^2# has two square roots, namely #(x-2)# and #-(x-2)#.
#sqrt((x-2)^2)# denotes the positive square root, so we have to pick the positive value from #(x-2)# and #-(x-2)#, which we can do by using #abs(x-2)#