How do you find the exact values of sin 15 degrees using the half angle formula?

3 Answers
Jul 21, 2015

I found: #sin(15°)=0.258#

Explanation:

Using the Half Angle Formula:
#color(red)(sin^2(x)=1/2[1-cos(2x)])#

with #x=15°# and #2x=30°#

you get:

#sin^2(15°)=1/2[1-cos(30°)]#

knowing that: #cos(30°)=sqrt(3)/2#:

#sin^2(15°)=1/2[1-sqrt(3)/2]#
#sin^2(15°)=(2-sqrt(3))/4=0.067#

So:
#sin(15°)=+-sqrt(0.067)=+-0.258#
We choose the positive one.

May 14, 2017

#sin(15^@)=sqrt(2-sqrt(3))/2=(sqrt(6)-sqrt(2))/4#
See below.

Explanation:

Find exact value of #sin(15^@)# with half-angle formula.

Consider the half-angle formula for sine: #sin(theta/2)=sqrt((1-cosx)/2)#

Since we know that 15 is half of 30, we can plug #30^@# in as #theta# and simplify:
#sin(15^@)=sin(30^@/2)=sqrt((1-cos(30^@))/2)#
#=sqrt((1-sqrt(3)/2)/2)#
#=sqrt(((2-sqrt(3))/2)/2)#
#=sqrt((2-sqrt(3))/4)#
or see slightly more advanced method to remove nested root (at the bottom)
#=sqrt(2-sqrt(3))/2#
which is our answer, but has a nested root
.
.
.
.
.
.
Removing nested root from answer:
Let us multiply both the numerator and denominator inside the square root by #2#:
#=sqrt((2-sqrt(3))/4*2/2)#
#=sqrt((4-2sqrt(3))/8)#

Now we can write #4-2sqrt(3)# as a square in the numerator:
#=sqrt((sqrt(3)-1)^2/8)#

We can take out a #sqrt(3)-1# from the numerator and a #2# from the denominator:
#=((sqrt(3)-1)/2)*1/sqrt(2)#
#=(sqrt(3)-1)/(2sqrt(2))#

We can rationalize the denominator:
#=(sqrt(2)(sqrt(3)-1))/4#
#=(sqrt(6)-sqrt(2))/4#

which is our answer without a nested root.

Aug 5, 2018

#(sqrt6-sqrt2)/4#

Explanation:

Use

#sin(A-B) = sinA*cosB - SinB*cosA#

So

#sin 15 = sin(45-30) = sin45*cos30 - sin30*cos45#

We know

#sin45 = cos45 = (sqrt2)/2#

We also know

#cos30 = (sqrt3)/2#

#sin30 = 1/2#

Plugging in the values, we get

#sin15 = (sqrt2)/2*((sqrt3)/2-1/2)#

Simplifying, we get

#(sqrt6-sqrt2)/4#