How do you multiply #(x^3+5x^2-3x-2) (x^2-2x+1)#? Algebra Polynomials and Factoring Multiplication of Polynomials by Binomials 1 Answer Don't Memorise Aug 23, 2015 #=color(blue)(x^5+3x^4-12x^3+9x^2+x-2# Explanation: #color(blue)((x^2−2x+1)) * (x^3+5x^2−3x−2)# #=color(blue)((x^2)) * (x^3+5x^2−3x−2) +color(blue)((-2x)) * (x^3+5x^2−3x−2) +color(blue)(1) * (x^3+5x^2−3x−2) # #=x^5+5x^4-3x^3-2x^2color(blue)(-2x^4-10x^3+6x^2+4x)+x^3+5x^2−3x−2# Adding like terms #=color(blue)(x^5+3x^4-12x^3+9x^2+x-2# Answer link Related questions What is FOIL? How do you use the distributive property when you multiply polynomials? How do you multiply #(x-2)(x+3)#? How do you simplify #(-4xy)(2x^4 yz^3 -y^4 z^9)#? How do you multiply #(3m+1)(m-4)(m+5)#? How do you find the volume of a prism if the width is x, height is #2x-1# and the length if #3x+4#? How do you multiply #(a^2+2)(3a^2-4)#? How do you simplify #(x – 8)(x + 5)#? How do you simplify #(p-1)^2#? How do you simplify #(3x+2y)^2#? See all questions in Multiplication of Polynomials by Binomials Impact of this question 1239 views around the world You can reuse this answer Creative Commons License