The half-life of plutonium-239 is 24,100 years. Of an original mass of 100g, how much plutonium-239 remains after 96,440 years?
2 Answers
Explanation:
Note: I edited the question to use the half-life of plutonium-239 as the correct value of
Use the equation
Where
and
to find
So:
The mass remaining is
Explanation:
The nuclear half-life of a nuclide tells you how much time must pass before half of an initial sample of said nuclide undergoes radioactive decay.
Simply put, an initial sample of radioactive isotope is halved with every passing of a half-life.
This means that for a
#A_0 * 1/2 -># after one half-life#A_0/2 * 1/2 = A_0/4 -># after two half-lives#A_0/4 * 1/2 = A_0/8 -># after three half-lives#A_0/8 * 1/2 = A_0/16 -># after four half-lives
#vdots#
and so on.
Notice that you can express the amount of the sample that remains after
#color(blue)(A_n = A_0 * 1/2^n)#
Now, notice that the time given to you is actually a multiple of the half-life
#n = 96440/24110 = 4#
This means that four half-lives of plutonium-239 will pass in
#m = "100 g" * 1/2^4 = "6.25 g"#
I'll leave the answer rounded to three sig figs, despite the fact that you only have one sig fig for the mass of the sample.