How do you factor #e^6 + f^3#?
1 Answer
Dec 9, 2015
Use the sum of cubes identity to find:
#e^6+f^3 = (e^2+f)(e^4-e^2f+f^2)#
Explanation:
The sum of cubes identity may be written:
#a^3+b^3 = (a+b)(a^2-ab+b^2)#
If we let
#e^6+f^3 = (e^2)^3+f^3#
#=(e^2+f)((e^2)^2-(e^2)f+f^2)#
#=(e^2+f)(e^4-e^2f+f^2)#
If we allow Complex coefficients then this can be factored further:
#=(e^2+f)(e^2+omega f)(e^2+omega^2 f)#
where