What is the slope of the tangent line of #r=2theta+3cos((theta)/2-(4pi)/3)# at #theta=(5pi)/4#?

1 Answer
Dec 23, 2015

Equation of tangent line

#y=-3.248347x-18.107412#

Explanation:

#frac{dy}{dx} = frac{ frac{dy}{d theta} }{ frac{dx}{d theta} }#

#= frac{ frac{d}{d theta}(rsintheta) }{ frac{d}{d theta}(rcostheta) }#

#= frac{ rcostheta + frac{dr}{d theta}sintheta }{ - rsintheta + frac{dr}{d theta}costheta }#

#frac{dr}{d theta} = frac{d}{d theta}(2theta + 3cos(theta/2 - frac{4pi}{3}))#

#= 2 - 3/2 sin(theta/2 - frac{4pi}{3})#

#frac{dr}{d theta}_{|theta=frac{5pi}{4}} = 2 - 3/2 sin((frac{5pi}{4})/2 - frac{4pi}{3})#

#= 2 - 3/2 sin(frac{-17pi}{24})#

#= 2 + 3/2 sin(frac{7pi}{24})#

#frac{dy}{dx}_{|theta=frac{5pi}{4}} = frac{ (2(frac{5pi}{4}) + 3cos(frac{5pi}{4}/2 - frac{4pi}{3}))cosfrac{5pi}{4} + frac{dr}{d theta}\_{|theta=frac{5pi}{4}} sinfrac{5pi}{4} }{ - (2(frac{5pi}{4}) + 3cos(frac{5pi}{4}/2 - frac{4pi}{3}))sinfrac{5pi}{4} + frac{dr}{d theta}\_{|theta=frac{5pi}{4}} cosfrac{5pi}{4} }#

#= frac{ (frac{5pi}{2} + 3cos(frac{-17pi}{24}))(-1/sqrt{2}) + frac{dr}{d theta}\_{|theta=frac{5pi}{4}} (-1/sqrt{2}) }{ - (frac{5pi}{2} + 3cos(frac{-17pi}{24}))(-1/sqrt{2}) + frac{dr}{d theta}\_{|theta=frac{5pi}{4}} (-1/sqrt{2}) }#

#= frac{ frac{5pi}{2} + 3cos(frac{17pi}{24}) + frac{dr}{d theta}\_{|theta=frac{5pi}{4}} }{ - frac{5pi}{2} - 3cos(frac{17pi}{24}) + frac{dr}{d theta}\_{|theta=frac{5pi}{4}} }#

#= frac{ frac{5pi}{2} + 3cos(frac{17pi}{24}) + (2 + 3/2 sin(frac{7pi}{24})) }{ - frac{5pi}{2} - 3cos(frac{17pi}{24}) + (2 + 3/2 sin(frac{7pi}{24})) }#

#= frac{ 4 + 5pi - 6cos(frac{7pi}{24}) + 3 sin(frac{7pi}{24}) }{ 4 - 5pi + 6cos(frac{7pi}{24}) + 3 sin(frac{7pi}{24}) }#

#~~ -3.24835#