What is #cos^3theta-6sin^3theta# in terms of non-exponential trigonometric functions?
1 Answer
#cos^3(theta)-6 sin^3(theta)#
#=1/4(cos(3theta)+3cos(theta))+3/2(sin(3theta)-3sin(theta))#
Explanation:
Since this is of degree
By De Moivre's formula:
#cos(3 theta) + i sin(3 theta)#
#=(cos(theta)+i sin(theta))^3#
#=cos^3(theta)+3 cos^2(theta) sin(theta) i - 3 cos(theta)sin^2(theta) - sin^3(theta) i#
#=(cos^3(theta)-3cos(theta)sin^2(theta))-(sin^3(theta)-3sin(theta)cos^2(theta)) i#
#=(4cos^3(theta)-3cos(theta)) + (3sin(theta)-4sin^3(theta))i#
So equating Real and Imaginary parts we find:
#cos(3theta) = 4cos^3(theta)-3cos(theta)#
#sin(3theta) = 3sin(theta)-4sin^3(theta)#
Hence:
#cos^3(theta) = 1/4(cos(3theta)+3cos(theta))#
#sin^3(theta) = 1/4(3sin(theta)-sin(3theta))#
So:
#cos^3(theta)-6 sin^3(theta)#
#=1/4(cos(3theta)+3cos(theta))+3/2(sin(3theta)-3sin(theta))#