How do you integrate #int (x-9)/((x+3)(x-7)(x+4)) # using partial fractions?

1 Answer
Mar 12, 2016

#int((x-9)/((x+3)(x-7)(x+4)))dx#

= #132/110ln(x+3)-2/110ln(x-7)-13/11ln(x+4)+c#

Explanation:

To integrate, we should first convert #(x-9)/((x+3)(x-7)(x+4))# in to partial fractions. Let

#(x-9)/((x+3)(x-7)(x+4))hArrA/(x+3)+B/(x-7)+C/(x+4)#. Simplifying RHS

=#[A(x-7)(x+4)+B(x+3)(x+4)+C(x+3)(x-7)]/((x+3)(x-7)(x+4))# or

=#[A(x^2-3x-28)+B(x^2+7x+12)+C(x^2-4x-21)]/((x+3)(x-7)(x+4))#

=#[(A+B+C)x^2+(-3A+7B-4C)x+(-28A+12B-21C)]/((x+3)(x-7)(x+4))#

Hence #A+B+C=0#, #-3A+7B-4C=1# and #-28A+12B-21C=-9#

Solving these will give us #A=132/110#, #B=-2/110# and #C=-13/11#

Hence #(x-9)/((x+3)(x-7)(x+4))hArr132/(110(x+3))-2/(110(x-7))-13/(11(x+4))#

Hence #int(x-9)/((x+3)(x-7)(x+4))dx# =

#int[132/(110(x+3))-2/(110(x-7))-13/(11(x+4))]dx#

or

Now one can use the identity #int(1/(ax+b))dx=1/aln(ax+b)#

Hence, #int[132/(110(x+3))-2/(110(x-7))-13/(11(x+4))]dx#

= #132/110ln(x+3)-2/110ln(x-7)-13/11ln(x+4)+c#