How do you simplify #sqrt(32x^3)#?

1 Answer
Mar 14, 2016

#=4 xsqrt( 2 x#

Explanation:

#sqrt(32x^3#

#=sqrt (32 * color(purple) ( x^2) * x^1#

  • Simplifying #sqrt32#

#sqrt(32) = sqrt(2*2*2*2*2) = sqrt(color(blue)(2^2 * 2^2) * 2)=color(blue)( 2 *2) sqrt2 = 4 sqrt2#

The expression becomes:

#sqrt (32 * color(purple)( x^2) * x^1 ) = 4 sqrt( 2 * color(purple)(x^2) * x^1#

#=4 * color(purple)(x)sqrt( 2 * x^1#

#=4 xsqrt( 2 x#