If #A= <7 , 2># and #B= <-7, -1 >#, what is #||A+B|| -||A|| -||B||#?

2 Answers
Mar 19, 2016

#color(red)||A+B|| - color(blue)(||A|| -||B||) = color(red)1-color(blue).209 ~~ .791#

Explanation:

Given:#A= <7 , 2># and #B= <-7, -1 >#,
Required: #color(red)||A+B|| - color(blue)(||A|| -||B||)#
The red is the magnitude of the vector addition and the blue is
the sum of the magnitude of vectors.
#color(red)(Red)#
#vec(A)+vec(B) = <0, 1>#
and the magnitude is: #color(red)(||A+B||=1)#

#color(blue)(Blue)#
#||A||= sqrt(7^2+2^2) =sqrt(53) #
#||A||= sqrt(7^2+1^2) =sqrt(50) #
#color(blue)(||A|| -||B||=sqrt(53)-sqrt(50)~~ .209#

#color(red)(Red)-color(blue)(Blue) = color(red)1-color(blue).209 ~~ .791#

Jul 1, 2018

#||A+B|| - ||A|| - ||B|| = color(orange)(13.3512#

Explanation:

#A=((7),(2))#

#B=((-7),(-1))#

#A+B=((7),(2)) +((-7),(-1))=((0),(1))#

#||A+B||=sqrt((0)^2+(1)^2)= 1#

#||A||=sqrt((7)^2+(2)^2)=sqrt(53)#

#||B||=sqrt((-7)^2+(-1)^2)=sqrt(50)#

#:.||A+B|| - ||A|| - ||B|| = color(orange)(1-sqrt(53)- sqrt(50) ~~ - 13.3512#