#A = int_(pi/6)^((5pi)/8) (cotxcscx - sinx) dx#
#A_1+A_2=int_(pi/6)^((5pi)/8) cotxcscx dx - int_(pi/6)^((5pi)/8)sinx dx#
#A_1 = int_(pi/6)^((5pi)/8) cotxcscx dx#
#int_(pi/6)^((5pi)/8) cosx/sinx*1/sinx dx= int_(pi/6)^((5pi)/8) cosx/sin^2x dx#
Let #u = sinx => (du)/dx= cosx# then rewrite the integral as:
#A_1=int (du)/u^2= -1/u# substitute u=sinx
#A_1=-1/sinx= -[cscx]_(pi/6)^((5pi)/8) = 2-1/sin((5pi)/8)#
#A_2=int_(pi/6)^((5pi)/8)sinx dx= [-cosx]_(pi/6)^((5pi)/8)#
#A_2= cos((5pi)/8) -sqrt(3)/2#
#A=A_1+A_2=2-1/sin((5pi)/8)+cos((5pi)/8)-sqrt(3)/2~~-.331#