How do you prove that the equilibrium concentrations of #"H"^(+)# and #"OH"^(-)# are #1.00 xx 10^(-7) "M"# at neutral pH using molar conductivity data at #25^@ "C"#?
1 Answer
Suppose we have
#barlambda_("H"^(+)) = 0.34982 ("S"cdot"L")/("mol"cdot"cm")# #barlambda_("OH"^(-)) = 0.1986 ("S"cdot"L")/("mol"cdot"cm")#
Electrical conductivity is often measured in
If we represent electrical conductivity as
#bb(lambda_"soln" = 10^6 sum_"strong electrolytes"[El ectrolyte]barlambda_E)#
#= 10^6 sum_(i) nu_i [X_i]barlambda_i#
#= color(green)(10^6(stackrel("H"^(+))overbrace(nu_(+)["H"^(+)]barlambda_("H"^(+)) )+ stackrel("OH"^(-))overbrace(nu_(-)["OH"^(-)]barlambda_("OH"^(-)))))# where:
- The units are
#(mu"S")/("cm") = "mol"/"L" xx ("S"cdot"L")/("mol"cdot"cm")# , and the#10^6# converts#"S"# into#mu"S"# .#nu_(+)# is the stoichiometric coefficient of the cation and#nu_(-)# is that of the anion.#"[X]"# means concentration of#"X"# in#"mol/L"# .
To prove that both concentrations are
#(lambda_"soln")/(10^6 mu"S/S") = nu_(+)["H"^(+)]*barlambda_("H"^(+)) + nu_(-)["OH"^(-)]*barlambda_("OH"^(-))#
Since we know that the components
#"H"_2"O" rightleftharpoons "H"^(+) + "OH"^(-)# ,
and so, we can simplify this to become:
#(lambda_"soln")/(10^6 mu"S/S") = ["H"^(+)]cdot(barlambda_("H"^(+)) + barlambda_("OH"^(-)))#
Solving for one of them,
#["H"^(+)] = ["OH"^(-)]#
#= (lambda_"soln")/((10^6 mu"S")/"S" * (barlambda_("H"^(+)) + barlambda_("OH"^(-)))#
#= (0.055 cancel(mu"S")"/"cancel"cm")/((10^6 cancel(mu"S"))/cancel("S") * (0.34982 (cancel("S")cdot"L")/("mol"cdotcancel"cm") + 0.1986 (cancel("S")cdot"L")/("mol"cdotcancel"cm"))#
#= 1.00288xx10^(-7)# #"mol/L"#
# ~~ color(blue)(1.00xx10^(-7))# #color(blue)("mol/L")#
Therefore, the concentrations of