How do I find the derivative of #y=ln(e^-x + xe^-x) #?

1 Answer
Mar 31, 2016

Use some logarithm properties and the fact that #d/dx(lnx)=1/x# to get #dy/dx=-x/(1+x)#.

Explanation:

Begin by factoring out an #e^-x# within the parenthesis:
#y=ln(e^-x(1+x))#

Now apply the property #ln(ab)=ln(a)+ln(b)# to get:
#y=ln(e^-x)+ln(1+x)#

Apply another property specific to the natural logarithm, #ln(e^a)=a#:
#y=-x+ln(1+x)#

We can now take the derivative with ease.

Using the sum rule, #d/dx(-x+ln(1+x))=d/dx(-x)+d/dx(ln(1+x))#. And using the fact that #d/dx(-x)=-1# and #d/dx(ln(1+x))=1/(1+x)#,
#(dy)/dx=-1+1/(1+x)#

Finally, add the fractions to get the final result:
#(dy)/dx=-(1+x)/(1+x)+1/(1+x)=-x/(1+x)#