How do you find the axis of symmetry, graph and find the maximum or minimum value of the function #y = x^2 + 4x -1#?

1 Answer
Apr 11, 2016

#"Axis of Symmetry" -> x=-2#
Minimum at #(x,y)->(-2,-5)#

Explanation:

The standard form is #y=ax^2+bx+c#

#color(blue)(underline("Determine axis of symmetry and vertex"))#

This can be written as: #a(x^2+b/ax)+c" "# ( in your case a=1)

The axis of symmetry as at # x=(-1/2)xx(b/a)#

This is also the value of #x_("vertex")-> ("maximum/minimum")#

#color(blue)(x_("vertex")" "=" "(-1/2)xx4=color(red)(-2)" "=" Axis of Symmetry")#

'.................................................................
Substitute for #x# to find #y_("vertex")#

#color(blue)(=>y_("vertex")=(-2)^2+4(-2)-1 = -5)#

'..........................................

#color(blue)("So vertex"->(x,y)-> (-2,-5))#

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#color(blue)(underline("Determine if maximum or minimum"))#

The coefficient of #x^2# is +1. That is, it is positive. As such the graph is of general shape #uu#.

#color(blue)("Thus the vertex is that of a minimum ")#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Tony B