How do you factor completely #9x^2+9x-10#?
1 Answer
Explanation:
One method involves completing the square, then using the difference of squares identity:
#a^2-b^2=(a-b)(a+b)#
First multiply through by
#4(9x^2+9x-10)#
#=36x^2+36x-40#
#=(6x+3)^2-9-40#
#=(6x+3)^2-7^2#
#=((6x+3)-7)((6x+3)+7)#
#=(6x-4)(6x+10)#
#=(2(3x-2))(2(3x+5))#
#=4(3x-2)(3x+5)#
Dividing both ends by
#9x^2+9x-10 = (3x-2)(3x+5)#
Why did I multiply by
The middle term of the original quadratic expression is odd, so if you do not multiply through by some multiple of
Without premultiplying, it looks like this:
#9x^2+9x-10#
#=(3x+3/2)^2-9/4-10#
#=(3x+3/2)^2-49/4#
#=(3x+3/2)^2-(7/2)^2#
#=((3x+3/2)-7/2)((3x+3/2)+7/2)#
#=(3x-2)(3x+5)#