How do you factor #6x^4y^3 + 21x^3y^2 − 9x^2y#?
1 Answer
Apr 24, 2016
#6x^4y^3+21x^3y^2-9x^2y#
#=3x^2y(2x^2y^2+7xy-3)#
#=6x^2y(xy+7/4-sqrt(73)/4)(xy+7/4+sqrt(73)/4)#
Explanation:
First notice that all of the terms are divisible by
#6x^4y^3+21x^3y^2-9x^2y=3x^2y(2x^2y^2+7xy-3)#
The remaining factor is a quadratic in
#xy = (-7+-sqrt(7^2-(4*2*-3)))/(2*2)#
#=(-7+-sqrt(49+24))/4#
#=(-7+-sqrt(73))/4#
Hence:
#2x^2y^2+7xy-3 = 2(xy+7/4-sqrt(73)/4)(xy+7/4+sqrt(73)/4)#
Putting it all together:
#6x^4y^3+21x^3y^2-9x^2y#
#=3x^2y(2x^2y^2+7xy-3)#
#=6x^2y(xy+7/4-sqrt(73)/4)(xy+7/4+sqrt(73)/4)#