How do you factor completely #15y^3+12y^2+5y+4 #?
1 Answer
May 1, 2016
#15y^3+12y^2+5y+4)#
#=(3y^2+1)(5y+4)#
#=(sqrt(3)y-i)(sqrt(3)y+i)(5y+4)#
Explanation:
Factor by grouping:
#15y^3+12y^2+5y+4)#
#=(15y^3+12y^2)+(5y+4)#
#=3y^2(5y+4)+1(5y+4)#
#=(3y^2+1)(5y+4)#
If
If we allow Complex coefficients we can factor as a difference of squares:
#3y^2+1 = (sqrt(3)y)^2-i^2 = (sqrt(3)y-i)(sqrt(3)y+i)#