How do you find the axis of symmetry, and the maximum or minimum value of the function #f(x)=x^2 -2x -15#?

2 Answers

Axis of symmetry #x=1#
Minimum value #=-16#

Explanation:

The parabola opens upward and so this function has a minimum value.
To solve for the minimum value we solve for the vertex.

#y=ax^2+bx+c#

#y=1*x^2+(-2)*x+(-15)#

so that #a=1# and #b=-2# and #c=-15#

Vertex #(h, k)#

#h=(-b)/(2a)#

#h=(-(-2))/(2(1))=1#

#k=c-b^2/(4a)#

#k=-15-(-2)^2/(4(1))#

#k=-15-1#

#k=-16#

Vertex #(h, k)=(1, -16)#

The minimum value of the function is #f(1)=-16#

Kindly see the graph of #f(x)=x^2-2x-15# with the axis of symmetry #x=1# dividing the parabola into two equal parts.
graph{(y-x^2+2x+15)(y+1000x-1000)=0[-36,36,-18,18]}

God bless ....I hope the explanation is useful.

May 4, 2016

Axis of symetry #x=1#
Value of the function #y=-16#

Explanation:

Given -

#y=x^2-2x-15#

Find Axis of symetry.

#x=(-2b)/(2a)=(-(-2))/(2 xx 1)=2/2=1#

Axis of symetry #x=1#

Maximum of Minimum Values

#dy/dx=2x-2#
#(d^2y)/(dx^2)=2#
#dy/dx=0 =>2x-2=0#
#x=2/2=1#

At #(x=1): dy/dx=0;(d^2y)/(dx^2)>0#
Hence there is a minimum at #x=1#

Value of the function

#y=1^2-2(1)-15#
#y=1-2-15=-16#