What is the equation of the tangent line of #r=theta-3sin(theta+(5pi)/3) # at #theta=(2pi)/3#?

1 Answer

Tangent line #color(blue)(y-(sqrt3pi)/3+9/4=((3sqrt3-2pi)/(15-2pisqrt3))*(x-(3sqrt3)/4+pi/3))#
#color(blue)(y+0.4362006358=-0.2640221212(x-0.2518405545))#

Explanation:

From the given equation #r=theta-3*sin(theta+(5pi)/3)#
solve #r# when #theta=(2pi)/3#

#r=theta-3*sin(theta+(5pi)/3)#
#r=(2pi)/3-3*sin((2pi)/3+(5pi)/3)#

#color(red)(r=(2pi)/3-(3sqrt3)/2)#

Solve for the slope #m# with the formula

#color(blue)(m=(r' sin theta+r*cos theta)/(r' cos theta-r*sin theta)#

#r'=(dr)/(d theta)=1-3 cos (theta+(5pi)/3)#

#m=#
#(((1-3 cos (theta+(5pi)/3)) sin theta+(theta-3*sin(theta+(5pi)/3))*cos theta))/(((1-3 cos (theta+(5pi)/3) )*cos theta-(theta-3*sin(theta+(5pi)/3))*sin theta)#

with the value #theta=(2pi)/3#

#m=#
#(((1-3 cos ((2pi)/3+(5pi)/3)) sin ((2pi)/3)+((2pi)/3-3*sin((2pi)/3+(5pi)/3))*cos ((2pi)/3)))/(((1-3 cos ((2pi)/3+(5pi)/3) )*cos ((2pi)/3)-((2pi)/3-3*sin((2pi)/3+(5pi)/3))*sin ((2pi)/3))#

#m=#
#(((1-3 cos ((7pi)/3)) sin ((2pi)/3)+((2pi)/3-3*sin((7pi)/3))*cos ((2pi)/3)))/(((1-3 cos ((7pi)/3) )*cos ((2pi)/3)-((2pi)/3-3*sin((7pi)/3))*sin ((2pi)/3))#

#m=((1-3/2) (sqrt3/2)+((2pi)/3-(3sqrt3)/2)(-1/2))/((1-3/2 )*(-1/2)-((2pi)/3-(3*sqrt3)/2)((sqrt3)/2)#

#m=(3sqrt3-2pi)/(15-2pisqrt3)#

convert #(r, theta)# to #(x, y)#

#x_1=r cos theta=((2pi)/3-(3sqrt3)/2)cos ((2pi)/3)=(3sqrt3)/4-pi/3#

#x_1=(3sqrt3)/4-pi/3#

#y_1=r sin theta=((2pi)/3-(3sqrt3)/2)sin ((2pi)/3)=(sqrt3*pi)/3-9/4#

#y_1=(sqrt3*pi)/3-9/4#

Solve the tangent line using #m# and #(x_1, y_1)#

#y-y_1=m(x-x_1)#

#y-(sqrt3*pi)/3+9/4=((3sqrt3-2pi)/(15-2pisqrt3))(x-(3sqrt3)/4+pi/3)#

Kindly see the graph of #r=theta-3*sin(theta+(5pi)/3)# and tangent line #y-(sqrt3*pi)/3+9/4=((3sqrt3-2pi)/(15-2pisqrt3))(x-(3sqrt3)/4+pi/3)#

desmos

God bless...I hope the explanation is useful.