How do you factor #x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x +1#?
1 Answer
#= (x^2+x+1)(x^2-2cos((2 pi)/9)x+1)(x^2-2cos((4 pi)/9)x+1)(x^2-2cos((8 pi)/9)x+1)#
Explanation:
Notice that if you multiply this polynomial by
So the zeros of this polynomial are all the Complex
Using the difference of cubes identity a couple of times, we find:
#x^9-1 = (x^3)^3-1^3 = (x^3-1)(x^6+x^3+1) = (x-1)(x^2+x+1)(x^6+x^3+1)#
Then we can divide both ends by
#x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 = (x^2+x+1)(x^6+x^3+1)#
No surprise there.
Note that the zeros of
The zeros of
#e^((2k pi)/9i) = cos((2k pi)/9) + i sin((2k pi)/9)#
with
The factors with Real coefficients, composed of Complex conjugate pairs are:
#(x-cos((2k pi)/9)-i sin((2k pi)/9))(x-cos((2k pi)/9)+i sin((2k pi)/9))#
#=x^2-2cos((2k pi)/9)x+1#
for
Hence:
#x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1#
#= (x^2+x+1)(x^2-2cos((2 pi)/9)x+1)(x^2-2cos((4 pi)/9)x+1)(x^2-2cos((8 pi)/9)x+1)#