How do you convert #x^2+y^2 - 2y=0# to polar form?
1 Answer
May 16, 2016
Explanation:
Using the formulae that link Cartesian to Polar coordinates.
#• x = rcostheta" and "y=rsintheta# and substituting into the given equation
#rArr(rcostheta)^2+(rsintheta)^2-2rsintheta=0# expanding brackets to obtain.
#r^2cos^2theta+r^2sin^2theta=2rsintheta# Take out a common factor of
#r^2#
#rArrr^2(cos^2theta+sin^2theta)=2rsintheta# using the trig. identity
#color(red)(|bar(ul(color(white)(a/a)color(black)(cos^2theta+sin^2theta=1)color(white)(a/a)|)))#
#rArrr^2=2rsintheta# divide both sides by r
#rArrr=2sintheta#