How do you convert #x^2+y^2 - 2y=0# to polar form?

1 Answer
May 16, 2016

#r=2sintheta#

Explanation:

Using the formulae that link Cartesian to Polar coordinates.

#• x = rcostheta" and "y=rsintheta#

and substituting into the given equation

#rArr(rcostheta)^2+(rsintheta)^2-2rsintheta=0#

expanding brackets to obtain.

#r^2cos^2theta+r^2sin^2theta=2rsintheta#

Take out a common factor of #r^2#

#rArrr^2(cos^2theta+sin^2theta)=2rsintheta#

using the trig. identity #color(red)(|bar(ul(color(white)(a/a)color(black)(cos^2theta+sin^2theta=1)color(white)(a/a)|)))#

#rArrr^2=2rsintheta#

divide both sides by r

#rArrr=2sintheta#