Let length be #L#
Let width be #W#
Let area be #A#
Given that #L>2W#
Let #L=2W+x#
#A=LxxW# .......................(1)
But #L=2W+x# so by substituting for #L# in equation (1)
#A=(2W+x)xxW#
#A=2W^2+xW#...............(2)
But area is given as #A=20#
Substitute for #A# in equation (2)
#20=2W^2+xW#
#=>2W^2+xW-20=0#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
as #x# is a variable we can find it by default
Set #color(brown)(" "2W^2+xW-20" ")color(blue)( ->" "(2W -4)(W+5))#
Multiply out the brackets to determine the value of #x#
#color(brown)(2W^2+xW-20)color(blue)( -> 2W^2+10W-4W-20)#
#color(brown)(2W^2+xW-20)color(blue)( -> 2W^2+6W-20)#
#color(green)("Thus "x=6" and "W=2" and "cancel(-5)#
However, #W=-5# is not logical so discard it.
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(green)("Test "L=2W+x=2(2)+6=10)#
#color(red)(=> area ->LxxW ->10xx2 =20" as given")#