How do you factor #6x^2+23x+6#?
2 Answers
Root1
Explanation:
This is a quadratic equation of form
Explanation:
Complete the square, then use the difference of squares identity:
#a^2-b^2=(a-b)(a+b)#
with
#6x^2+23x+6#
#=6(x^2+23/6x+1)#
#=6((x+23/12)^2-23^2/12^2+1)#
#=6((x+23/12)^2-(529-144)/12^2)#
#=6((x+23/12)^2-385/12^2)#
#=6((x+23/12)-sqrt(385)/12)((x+23/12)+sqrt(385)/12)#
#=6(x+(23-sqrt(385))/12)(x+(23+sqrt(385))/12)#
Note that it is not possible to simplify