Recall the reciprocal identities:
#sectheta = 1/costheta#
#csctheta = 1/sintheta#
#cottheta = 1/tantheta#
Also, the quotient identities will be helpful
#tantheta = sintheta/costheta#
#cottheta = costheta/sintheta#
Now, simplify both sides:
#(1/costheta + 1/sintheta)(costheta - sin theta) = costheta/sintheta - sintheta/costheta#
#(sin theta + costheta)/(costhetasintheta)xx (costheta - sintheta) = (cos^2theta - sin^2theta)/(costhetasintheta#
#((sin theta + costheta)(costheta - sin theta))/(costhetasintheta) = (cos^2theta - sin^2theta)/(costhetasintheta)#
#(sin^2theta - cos^2theta)/(costhetasintheta) = (cos^2theta - sin^2theta)/(costhetasintheta)#
Identity proved!!