General discussion to determine the sign of #=>sintheta+costheta#
From the given condition
#sintheta+sqrt2sintheta=costheta#
#=>(sqrt2+1)sintheta=costheta#
#:.sintheta/costheta=1/(sqrt2+1)....(1)#
#tantheta=1/(sqrt2+1)>0#
#tantheta# being positve #theta# should be in 1st or 3rd quadrant.when #theta# is in the 1st quadrant is positive but in 3rd quadrant #sintheta and costheta# both negative and the the value #sintheta+costheta#should be negative.
So # color(red)(sintheta+costheta" will be either +ve or -ve")#
Method -I (A tricky approach)
From equation (1) have
#sintheta/costheta=1/(sqrt2+1)....(1)#
and
Inverting and ratiolising numerator of RHS
#costheta/sintheta=sqrt2+1=1/(sqrt2-1)....(2)#
Adding equation(1) and equation (2)we get
#sintheta/costheta+costheta/sintheta=1/(sqrt2+1)+1/(sqrt2-1)#
#(sin^2theta+cos^2theta)/(sinthetacostheta)=(2sqrt2)/((sqrt2-1)(sqrt2+1))=(2sqrt2)/1#
Inverting and rearranging we get
#(2sinthetacostheta)/(sin^2theta+cos^2theta)=1/(sqrt2)#
Adding 1 on both sides we get
#1+(2sinthetacostheta)/(sin^2theta+cos^2theta)=1+1/(sqrt2)#
#(sintheta+costheta)^2/(sin^2theta+cos^2theta)=(sqrt2+1)/sqrt2#
#=>(sintheta+costheta)^2=(sqrt2+1)/sqrt2#
#=>sintheta+costheta=+-sqrt((sqrt2+1)/sqrt2)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Method - II
Given
#sintheta-costheta=-sqrt2sintheta#
Dividing both sides by# sqrt2 " "#we have
#=>1/sqrt2sintheta-1/sqrt2costheta=-sintheta#
(Considering unit of angle in degree.)
#=>cos(45)sintheta-sin(45)costheta=-sintheta...(1)#
#=>sin(theta-45)=sin(-theta)#
#=>theta-45=-theta#
#=>2theta=45#
#=>theta=22.5#
Another solution is posible satisfying positive value of #tantheta# when #theta# is in third quadrant
Then from eq (1)
#sin(theta-45)=sin(360-theta)#
#=>theta=405/2=180+22.5#
Now
#sintheta+costheta#
#=sqrt2(1/sqrt2sintheta+1/sqrt2costheta)#
#=sqrt2sin(theta+45)....(2)#
#color (blue)("when " " theta=22.5#
Inserting #theta=22.5#
#=sqrt2sin(22.5+45)#
#=sqrt2sin(90-22.5)#
#=sqrt2cos(22.5)#
#=sqrt2sqrt(1/2(1+cos45))#
#=sqrt(1+cos45)#
#=sqrt(1+1/sqrt2)#
#=sqrt((sqrt2+1)/sqrt2)#
#color (green)("Again when " " theta=180+22.5#
we put #theta=180+22.5#
in eq(2)
we get
#=>sintheta+costheta
=sqrt2sin(theta+45)#
#=sqrt2sin(180+22.5+45)#
#=sqrt2sin(180+22.5+45+22.5-22.5)#
#=sqrt2sin(270-22.5)#
#=-sqrt2cos(22.5)#
#=-sqrt2(sqrt(1/2(1+cos45)))#
#=-sqrt2(sqrt(1/2(1+1/sqrt2)))#
#=-sqrt(1+1/sqrt2)#
#=-sqrt((sqrt2+1)/sqrt2)#
So combining these two we get
#sintheta+costheta=+-sqrt((sqrt2+1)/sqrt2)#