A Ferris wheel 50ft in diameter makes one revolution every 40sec. If the center of the wheel is 30ft above the ground, how long after reaching the low point is a rider 50ft above the ground?

1 Answer
Jun 8, 2016

I found: #15.91s# BUT check my maths....

Explanation:

Consider the (confused) diagram:
enter image source here
We can evaluate the angle #alpha# using trigonometry applied to the orange small triangle with height: #50-30=20"ft"# and hipotenuse equal to the radius #r=25"ft"#
so:
#20=25sin(alpha)#
#alpha=arcsin(20/25)=53.13^@#
So #50"ft"# of height corresponds to the total angle: #90^@+53.13^@=143.13^@=2.498"rad"#

Now:

Angular velocity is #omega=(2pi)/T=(2pi)/40=0.157"rad/s"#
To describe #2.498"rad"# it will take:
#t=2.498/0.157=15.91s#