How do you express #cos(pi/ 3 ) * sin( ( 9 pi) / 8 ) # without using products of trigonometric functions?

1 Answer
Jun 24, 2016

#P = - (1/2)sin (pi/8)#

Explanation:

Product #P = cos (pi/3).sin ((9pi)/8)#
Trig table --> #cos (pi/3) = 1/2#
#sin ((9pi)/8) = sin (pi/8 + pi) = - sin (pi/8)#
P can be expressed as:
#P = - (1/2)sin (pi/8).#
Note. We can evaluate #sin (pi/8)# by using the trig identity:
#cos 2a = 1 - 2sin^2 a.#
#cos ((2pi)/8) = cos (pi/4) = sqrt2/2 = 1 - 2sin^2 (pi/8)#
#sin^2 (pi/8) = 1 - sqrt2 = (2 - sqrt2)/4#
#sin (pi/8) = sqrt(2 - sqrt2)/2#.
Take the positive value since sin (pi/8) is positive.
#P = - (1/4)sqrt(2 - sqrt2)#