What is #sin^6theta# in terms of non-exponential trigonometric functions?
3 Answers
Explanation:
De Moivre's formula tells us that:
#(cos(x)+i sin(x))^n = cos(nx)+i sin(nx)#
For brevity write,
Use Pythagoras:
#s^2+c^2=1#
So:
#cos(6 theta)+i sin(6 theta)#
#=(c+is)^6#
#=c^6+6i c^5s-15 c^4s^2-20i c^3s^3+15 c^2 s^4+6i cs^5-s^6#
#=(c^6-15c^4s^2+15c^2s^4-s^6)+i(6c^5s-20c^3s^3+6cs^5)#
Equating Real parts:
#cos(6 theta) = c^6-15c^4s^2+15c^2s^4-s^6#
#=(1-s^2)^3-15(1-s^2)^2s^2+15(1-s^2)s^4-s^6#
#=(1-3s^2+3s^4-s^6)-15(1-2s^2+s^4)s^2+15(1-s^2)s^4-s^6#
#=1-3s^2+3s^4-s^6-15s^2+30s^4-15s^6+15s^4-15s^6-s^6#
#=1-18s^2+48s^4-32s^6#
#cos(4 theta)+i sin(4 theta)#
#=(c+is)^4#
#=c^4+4ic^3s-6c^2s^2-4ics^3+s^4#
#=(c^4-6c^2s^2+s^4)+i(4c^3s-4cs^3)#
Equating Real parts:
#cos(4 theta) = c^4-6c^2s^2+s^4#
#=(1-s^2)^2-6(1-s^2)s^2+s^4#
#=(1-2s^2+s^4)-6(1-s^2)s^2+s^4#
#=1-2s^2+s^4-6s^2+6s^4+s^4#
#=1-8s^2+8s^4#
#cos(2 theta)+i sin(2 theta)#
#=(c+is)^2#
#=c^2+2ics-s^2#
#=(c^2-s^2)+i(2cs)#
Equating Real parts:
#cos(2 theta) = c^2-s^2 = (1-s^2)-s^2 = 1-2s^2#
So:
#cos(6 theta)-6cos(4 theta)#
#=(1-18s^2+48s^4-32s^6)-6(1-8s^2+8s^4)#
#=1-18s^2+48s^4-32s^6-6+48s^2-48s^4#
#=-5+30s^2-32s^6#
So:
#cos(6 theta)-6cos(4 theta)+15cos(2 theta)#
#=(-5+30s^2-32s^6)+15(1-2s^2)#
#=-5+30s^2-32s^6+15-30s^2#
#=10-32s^6#
Hence:
#sin^6 theta=1/32(10-cos(6 theta)+6cos(4 theta)-15cos(2 theta))#
Explanation:
Apply the trig identity:
Explanation:
but
then
choosing now
and solving the set of linear equations
for
so