How do you find the square root of #16 ( cos ((2pi)/3) + i sin ((2pi)/3))#?
1 Answer
Jul 5, 2016
Explanation:
If
#sqrt(r(cos theta + i sin theta)) = sqrt(r)(cos (theta/2) + i sin (theta/2))#
So in our example:
#sqrt(16(cos((2pi)/3)+i sin((2pi)/3)))#
#= 4(cos(pi/3)+i sin(pi/3))#
#= 4(1/2+sqrt(3)/2i)#
#=2+2sqrt(3)i#
Note that this is the principal square root.
The other square root is:
# -4(cos(pi/3)+i sin(pi/3)) = -2-2sqrt(3)i#