How do you find the derivative of #1/(2x)#?
2 Answers
Jul 9, 2016
Explanation:
Differentiate using the
#color(blue)"power rule"#
#color(red)(|bar(ul(color(white)(a/a)color(black)(d/dx(ax^n)=nax^(n-1))color(white)(a/a)|)))# Rewrite the function as.
#1/(2x)=1/2xx1/x=1/2xxx^-1=1/2x^-1#
#rArrd/dx(1/2x^-1)=-1xx1/2x^(-1-1)=-1/2x^-2#
#rArrd/dx(1/(2x))=-1/2x^-2=-1/(2x^2)#
Jul 9, 2016
ALTERNATIVE APPROACH
Explanation:
By the quotient rule:
Hopefully this helps!