How do you divide #(6x^4+6x^3-12x^2-7x-7)/(x-2) #?
1 Answer
I got:
#= 6x^3 + 18x^2 + 24x + 41 + 75/(x-2)#
A fairly straightforward way to do it is synthetic division.
For this, you use the coefficients of each term. It's like regular long division, but faster/more compact.
#6x^4 + 6x^3 - 12x^2 - 7x - 7#
#=># #6" "6" "-12" "-7" "-7#
The factor divided by is as if you were setting it equal to
So, we begin with:
#color(white)([(color(black)(ul(2)|), color(black)(6), color(black)(6), color(black)(-12), color(black)(-7), color(black)(-7)),(color(black)(+),color(black)(ul" "),color(black)(ul" "),color(black)(ul" "),color(black)(ul" "),color(black)(ul" ")),(color(black)(),color(black)(),color(black)(),color(black)(),color(black)(),color(black)())])#
Then, the basic steps are:
- Bring down the first polynomial term.
- Multiply by the divisor, place under the next polynomial term, moving left to right.
- Add the current polynomial term and the current product from step 2, place underneath.
- Repeat steps 2 and 3 until you've reached the last column and added the terms together already.
So, we would get:
#color(white)([(color(black)(ul(2)|), color(black)(6), color(black)(6), color(black)(-12), color(black)(-7), color(black)(-7)),(color(black)(+),color(black)(ul" "),color(black)(ul" "),color(black)(ul" "),color(black)(ul" "),color(black)(ul" ")),(color(black)(),color(black)(6),color(black)(),color(black)(),color(black)(),color(black)())])#
#color(white)([(color(black)(ul(2)|), color(black)(6), color(black)(6), color(black)(-12), color(black)(-7), color(black)(-7)),(color(black)(+),color(black)(ul" "),color(black)(ul"12"),color(black)(ul" "),color(black)(ul" "),color(black)(ul" ")),(color(black)(),color(black)(6),color(black)(18),color(black)(),color(black)(),color(black)())])#
#color(white)([(color(black)(ul(2)|), color(black)(6), color(black)(6), color(black)(-12), color(black)(-7), color(black)(-7)),(color(black)(+),color(black)(ul" "),color(black)(ul"12"),color(black)(ul"36"),color(black)(ul" "),color(black)(ul" ")),(color(black)(),color(black)(6),color(black)(18),color(black)(24),color(black)(),color(black)())])#
#color(white)([(color(black)(ul(2)|), color(black)(6), color(black)(6), color(black)(-12), color(black)(-7), color(black)(-7)),(color(black)(+),color(black)(ul" "),color(black)(ul"12"),color(black)(ul"36"),color(black)(ul"48"),color(black)(ul" ")),(color(black)(),color(black)(6),color(black)(18),color(black)(24),color(black)(41),color(black)())])#
#color(white)([(color(black)(ul(2)|), color(black)(6), color(black)(6), color(black)(-12), color(black)(-7), color(black)(-7)),(color(black)(+),color(black)(ul" "),color(black)(ul"12"),color(black)(ul"36"),color(black)(ul"48"),color(black)(ul"82")),(color(black)(),color(black)(6),color(black)(18),color(black)(24),color(black)(41),color(black)(75))])#
Now just re-assign the coefficients to the polynomial solution. Our answer had to have gone down one degree from the quartic that we started with.
Therefore, our answer is a cubic:
#= q(x) + r(x)#
#= color(blue)(stackrel(q(x), "quotient")overbrace(6x^3 + 18x^2 + 24x + 41) + stackrel(r(x), "remainder")overbrace(75/(x-2)))#