How do you expand #(2x+2y)^4#? Precalculus The Binomial Theorem Pascal's Triangle and Binomial Expansion 1 Answer Gerardina C. Aug 30, 2016 #16x^4+64x^3y+96x^2y^2+64xy^3+16y^4# Explanation: Since #(a+b)^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4#, then #(2x+2y)^4=(2x)^4+4(2x)^3(2y)+6(2x)^2(2y)^2+4(2x)(2y)^3+(2y)^4# that is #16x^4+64x^3y+96x^2y^2+64xy^3+16y^4# Answer link Related questions What is Pascal's triangle? How do I find the #n#th row of Pascal's triangle? How does Pascal's triangle relate to binomial expansion? How do I find a coefficient using Pascal's triangle? How do I use Pascal's triangle to expand #(2x + y)^4#? How do I use Pascal's triangle to expand #(3a + b)^4#? How do I use Pascal's triangle to expand #(x + 2)^5#? How do I use Pascal's triangle to expand #(x - 1)^5#? How do I use Pascal's triangle to expand a binomial? How do I use Pascal's triangle to expand the binomial #(a-b)^6#? See all questions in Pascal's Triangle and Binomial Expansion Impact of this question 3932 views around the world You can reuse this answer Creative Commons License